New Opportunities for Critical Zone Science

Executive Summary

Over the last decade, researchers from geology, ecology, soil science, meteorology, geomorphology, and hydrology converged to launch Critical Zone (CZ) science as a discipline unto itself. In the new science of the critical zone, investigators from different perspectives together study Earth’s living skin from the top of vegetation to bedrock. CZ scientists forge theories that incorporate geological, chemical, physical, and biological insights. CZ scientists focus on modern environments but integrate observations of today’s fluxes with past records of tectonic, erosion and climatic processes. CZ science grew from within the geosciences community — particularly those working on broadly defined surface processes (geomorphology, low temperature geochemistry and geobiology, and hydrology) — because of the inherent need to understand the response of near Earth surface processes to climatic and human perturbations. The term “critical zone” was first popularized in the 2001 NRC report entitled Basic Research Opportunities in Earth Science. Critical zone science now taught in classrooms (K-Graduate) around the world. CZ science is driving a new understanding of the links that connect geomorphology, hydrology, climate, ecosystems, and geology. In a real sense, CZ science places the geological underpinnings into ecosystem or catchment science. To enable decision-makers to design integrative policies and best practices, CZ scientists forge models that incorporate all the important agents and drivers.

Recognition of the CZ as an entity that should be considered as a single system has brought depth (in every sense) to questions addressed by ecologists, hydrologists, geomorphologists, pedologists, geochemists, and climate scientists. To wit, recognition that subsurface architecture plays a role in controlling runoff in watersheds forces a consideration of rock weathering and development of deep soils and regolith. Imaging that reveals differing topographies at the weathered rock/fresh rock interface compared to ground topography in different settings inspires weathering models that involve forcings as diverse as regional tectonic stresses, fluvial incision rates, Quaternary climate history, and groundwater flow models. Exploration of the spatial and temporal variations in microbial communities in the CZ is leading to new questions about the biotic processes that operate at the microscopic scale to shape the CZ.

The growth of CZ science is driven by disciplinary Earth-surface scientists who wanted to integrate from vegetation to bedrock. In the United States, the catalysts for this development has been the funding of Critical Zone Observatories (CZO), a network initiated by the Earth Sciences Division of the National Science Foundation. The CZOs grew and flourished, drawing scientists together and creating a vigorous and engaged CZ community of researchers who focus on the critical zone. Each CZO initiated core measurements appropriate to the site in five areas that together provided a community platform for research. While the type and degree of data available varies depending on site attributes, the past decade of measurements provides a solid foundation for future critical-zone science. We are now poised to use CZ science to project changes in the Earth surface system using quantitative models for prediction, including the exciting frontier of projecting anthropogenic impacts. This prediction, termed “Earthcasting” is aimed at driving better decision making.

The 10-year CZO program in the United States has stimulated critical-zone science abroad as well. Globally the program has produced new ideas, new data, and newly educated junior scientists. But the stage has only been set: the next 10 years can generate a more quantitative science led by integrative thinkers from today’s younger generation. Looking back, we highlight 10 key ideas that have emerged from the program thus far.

1. Humans depend on critical zone services including food, wood and fiber production, water resources, sediment and soil production, and stream flow.
2. Biota derive nutrients from underlying rock and from infalling dust and aerosols; the geologic or atmospheric availability of elements—either beneficial nutrients or harmful toxins—may explain variations in their distribution and health.
3. Trees derive water from both soil moisture (water held in mobile regolith) and rock moisture (water held in weathered rock); the cycling of water through the critical zone has far-reaching implications
for element cycling, regolith formation, below-ground biota, water budgets, and climate boundary layers.

4. Geophysical imaging and deep sampling of the subsurface can be used to map deep CZ structure, which is poorly known in most regions.

5. Models to date suggest that the spatial variation in critical zone architecture across hillslopes of a given lithology depends on river incision rates, regional stress fields, solute evolution of subsurface waters, depth of freeze-thaw activity, as well as surface sediment transport process.

6. CZ structure controls hydrologic function, and in turn CZ structure evolves through physical, chemical, and biological processes controlled by water.

7. The distribution of microorganisms in regolith — “the weathering microbiome” — is also part of CZ structure; the co-evolution of CZ structure and microbiologic function is just beginning to be deciphered.

8. CZ architectures may be a legacy of geologic, tectonic, or climate history, and may not be in equilibrium with current forcing.

9. Anthropogenic perturbations are changing the critical zone in some areas from a system that processes nutrients, “transformer-dominated” system, to a system that simply moves nutrients through, “transporter-dominated” system.

10. An emphasis on the entire critical zone throughout the undergraduate, graduate and postdoctoral program attracts and develops a diverse group of scholars who bridge earth and environmental sciences seamlessly.

In all of these topics, the goal has been to elucidate and predict CZ function and processes. These observations have arisen through investigations targeting the over-arching critical-zone questions: (i) What controls CZ properties and processes? (ii) What will be the response of CZ structure, and its stores and fluxes, to climate and land use change? (iii) How can improved understanding of the CZ be used to enhance ecosystem resilience and sustainability, and restore ecosystem function? (iv) How do we ensure widespread adoption of a critical-zone approach in both the current and next generation of scientists, managers, and policy makers?

In the first ten years of observatories, the ten key ideas enumerated above emerged organically. The next ten years will allow larger-scale patterns to be understood and explained and will feature expanded efforts to study humans within the CZ. To promote this requires: 1) a set of observatories that catalyzes work across disciplines by making common measurements, developing new models, and articulating new theory, 2) new observatories in locations that cannot be understood within the current observational network; 3) satellite sites that leverage the existing observatory network infrastructure, including sites from other networks; 4) focused questions addressed through shorter-term regional or national campaigns across the leveraged observatory network, 5) synthesis initiatives that foster the emergence of theory and prediction, and 6) outreach activities that teach nonscientists and citizens about the CZ, and engage decision makers with critical-zone science. These approaches will enhance the growth of CZ science, and allow its practitioners to articulate the bigger patterns inherent in the critical zone across space and time and will allow inclusion of physical, life, and social scientists alike.

The CZ program, and the CZO network, provide a robust platform for convergent CZ research. As noted by NSF in its “Big Ideas” planning, grand challenges of today – protecting human health; understanding the food, energy, water nexus; exploring the universe at all scales – will not be solved by one discipline alone. They require convergence, i.e. the deep integration of knowledge, techniques and expertise from multiple fields to form new & expanded frameworks for addressing scientific & societal challenges & opportunities. Going forward, our vision of the critical-zone program does this, across multiple geo, bio and social sciences.

In the rest of this document we amplify these ideas and emphasize the knowledge shared and ideas generated from the June 2017 CZO All Hands Meeting that was held in Arlington, Virginia. The document is divided into the following sections: 1) what we have learned from a decade of CZ science, 2) compelling critical zone questions for the decade to come, 3) the next generation of critical zone observatories and approaches, and 4) critical zone education and outreach initiatives.
1 What We Have Learned From a Decade of CZ Science:

The integrated approach of CZ science has led to several theories that now provide the platform for predictions regarding CZ structure, dynamics and evolution. Since the inception of the US CZO network, the network grew to its current configuration of nine CZOs (Fig. 1): Boulder, Calhoun, Catalina-Jemez, Eel River, Intensively Managed Landscape (IML), Luquillo, Reynolds, Shale Hills, and Southern Sierra (White et al. 2015). Here we provide examples of how our understanding of CZ form and function has evolved over the last decade, readying us for this next step. The ten transformative ideas that emerged from the CZO network are outlined and discussed below.

1.1 Humans depend on critical zone services including food, wood and fiber production, water resources, sediment and soil production, and stream flow

The critical zone is experiencing unprecedented pressures at the same time that it provides many goods and services — food, fiber, shelter, aggregate, water—essential to humans. CZ science provides an integrative framework for understanding how these services function and how they can be maintained for future generations (White et al. 2015). The nascent term “critical zone services”, now used similarly to “ecosystem services”, refers to services important to humans that rely on, or interact with, long-term geological processes and deeper systems (Field et al. 2015).

While some services of the CZ can also be thought of as ecosystem services, others clearly do not fall under the rubric identified for decades by ecosystem scientists. For example, CZ services include processes related to deep groundwater and how it nourishes ecosystems with clean water, processes related to long-timescale soil formation, and processes related to mined resources.

By extending the timescales and spatial scales (particularly with depth below the surface) of ecosystem services to that of CZ services, we increase our ability to manage Earth’s surface sustainably. Sustaining ecosystem services requires understanding the processes operating on geologic time scales — soil erosion, soil production, sediment movement on hillslopes and in rivers, landscape change — that support these natural services, and understanding how they interact with short-term biogeochemical processes and land use, changes that occur on human time scales. Long-term measurements made in an observatory context are required to identify disruptions to CZ services, and to develop an understanding of how these services respond to climate change, more localized anthropogenic forcing, and associated extreme events. These measurements and inferences will allow identification of sensitivities and thresholds in the critical zone to inform human decision-making practices and policies.

1.2 Biota derive nutrients from underlying rock and from infalling dust and aerosols; the geologic or atmospheric availability of elements—either beneficial nutrients or harmful toxins—may explain variations in their distribution and health

Natural dust inputs have been shown to sustain ecosystems in places where nutrient supply from bedrock weathering is insufficient to do so (e.g., Chadwick et al. 1999, Pett-Ridge 2009, McClintock et al. 2015, Aciego et al. 2017). These ecosystems include slowly-eroding and phosphorus-poor tropical ecosystems (Pett-Ridge 2009, McClintock et al. 2015). On the other hand, a number of anthropogenic emissions impact the critical zone. The fate of anthropogenic atmospheric nitrogen deposition depends on slope aspect in the Colorado Front Range, due to aspect controls on CZ structure and hydrologic function (Hinckley et al. 2014, 2017). Additionally, mining and smelting have increased global emissions of heavy metals to the atmosphere (Herndon et al. 2011, 2014, 2015, Kraepiel et al. 2015, Ma et al. 2014). These metals are subsequently deposited back to Earth's surface over broad areas, leaving behind a record of
human activities and disrupting biogeochemical cycles (e.g., Fig. 2). CZO work on atmospheric deposition and metal mobility at the Earth’s surface has been highlighted in National Academy of Sciences publications tackling problems related to the apportionment of metal contamination in soils and household yards (NAS, 2017).

![Figure 2](image)

Fig. 2: Isotopic signatures of soils from the Susquehanna Shale Hills CZO (SPRT, SPMS, SPVF) in comparison to various sources of lead (grey-circled areas). Solid symbols are samples from soil or bedrock, and open symbols refer to samples of Pennsylvania coal or coal from elsewhere in the U.S. Soil lead derived from bedrock and atmospherically deposited lead from local coal burning and iron/lead ore smelting, largely released during the early industrial revolution. (From Ma et al. 2014).

Dust is particularly significant for longer timescale processes. Cosmogenic radionuclide dating of alluvial terraces in the U.S. High Plains reveals complex histories of fluvial planation and incision, and intermittent loess cover that affects soil development (Foster et al. 2017). CZO researchers have recently upended the assumption that dust is relatively unimportant in mountain ecosystems (i.e., where bedrock conversion to soil provides continuous nutrient supply) (Aciego et al. 2017, Arvin et al. in review). The measured aeolian fluxes, cosmogenic nuclides, and bulk geochemistry demonstrate that dust dominates
over bedrock in nutrient supply to Sierra Nevada ecosystems (Aciego et al. 2017). Across a suite of mid-elevation sites, the dust-deposited flux of plant-essential P is on par with the P supply rate from conversion of bedrock to soil (Fig. 3). The ecological significance of dust is further supported by analyses of neodymium (Nd) isotopes in pine needles, dust, and bedrock, which demonstrate that dust contributes as much as 88% of Nd (a potential tracer of P) to vegetation at one site (Arvin et al. in review). This study is also an example of an emerging CZO approach (“CZ-Tope”) that emphasizes the interpretation of multiple isotopic systems on the same samples from observatory sites (Sullivan et al. 2016).

CZO research builds on efforts to understand the global impact of dust (Maldope 1963, Pewe, 1981, Prospero et al. 1981, Muhs et al. 1990, Pye 1995, Neff et al. 2008) by delving into the mechanistic impact of dust on ecosystem and soil formation processes using tools and knowledge that spans multiple disciplines. For example, CZO researchers have observed that in more than 1300 mountain sites spanning diverse climates and rock types, dust deposition is often on par with bedrock conversion to soil (Arvin et al. in review). New analyses show that dust fluxes may often contribute to large overestimation in denudation rates from cosmogenic nuclides, exposing potentially profound errors in previously measured landscape evolution patterns (Arvin et al. in review). Together, these analyses suggest that the paradigm of dust as a relatively minor contributor to mountain soils and ecosystems needs to be revised.

Fig. 3: (Top) Study sites are distributed along an elevation transect through the Sierra Nevada, California. Central Valley dust sources differ at sites by as much as 70 km in distance and 2300 m in elevation. Image (inset) shows array of dust collectors at the mid-elevation Providence site. (Bottom) Fluxes of the plant-essential macronutrient phosphorus at the Providence Creek site due to erosion (gray bars) and aeolian deposition (black bars). Bars span ranges in fluxes from multiple measurements. Total dust flux is the sum of fluxes from Asian and Central Valley sources. On soil-mantled slopes, P input from dust accounts for 10-20% of the supply of bedrock P. On bare rock slopes, P supplied from bedrock is much lower and commensurate with the fluxes from the Asian and Central Valley dust sources. The fluxes of P implied by catchment-wide sediment yields are generally lower than the estimated dust fluxes, implying that the modern ecosystem is strongly influenced by the day-to-day contributions of dust from Asia and the Central Valley. Adapted from Figs. 1 and 5 of Aciego et al. (2017).
1.3 Trees derive water from both soil moisture (held in mobile regolith) and rock moisture (held in weathered rock); the cycling of water through the critical zone has far-reaching implications for element cycling, regolith formation, below-ground biota, water budgets, and climate boundary layers.

Hydrologic studies of upland landscapes on bedrock in CZOs demonstrate that significant flow and storage of water occurs within the weathered and fractured bedrock that lies beneath the soil layer (Anderson et al. 1997, Manning et al. 2013, Brantley et al. 2013, Flinchum et al. in review). A new picture of the CZ is emerging that emphasizes the tens to hundreds of meters of regolith that underlies ridge and valley landscapes (sensu Riebe et al. 2017) (Fig. 4). These observations collectively suggest that hydrologic fluxes through weathered bedrock are a common and significant component of the terrestrial hydrologic cycle in landscapes developed on bedrock. This storage of exchangeable water in the fractures and matrix of weathered bedrock (Fig. 4), termed ‘rock moisture’ by Salve et al. (2012), has significant implications for global cycling of solutes and water. Perhaps one of the best datasets showing the nature of the deep regolith derives from a 70 m borehole from the Calhoun CZO that has been used to

Fig. 4: A conceptual hillslope profile depicting the structure of the CZ extending into weathered bedrock. The weathered bedrock region hosts rock moisture storage in the fractures, matrix, and fracture-fill. Fractured bedrock groundwater drains to streams.

Fig. 5: Investigation of the ecohydrological and geochemical implications of rock moisture at the Eel River CZO. (Left) The Vadose Zone Monitoring System directly samples the freely draining and tightly held water in the variably saturated weathered bedrock. (Right) Rock moisture monitoring via neutron probe surveys in boreholes across the ERCZO reveals an annually consistent addition and depletion of rock moisture (Rempe, 2016). In the seasonally dry climate, initial rains refill the rock moisture reservoir to > 12 m deep, with all remaining precipitation traveling to a seasonally perched groundwater system in fractured bedrock. Stored rock moisture is then depleted by deeply rooted vegetation over the dry season.
document variations in porosity related to weathering and fracturing (Holbrook et al. in review.). At the humid Shale Hills site, Hasenmueller et al. (2017) identified the role of the shale rock matrix as a nutrient source for vegetation rooted in rock. In the interbeded shale/siltstone deposits of the Eel River CZO and the granites of the Southern Sierra CZO, a prolonged dry season leads to the dependence of deeply rooted vegetation on rock moisture (Bales et al. 2011, Rempe, 2016).

Many tree species utilize moisture contained in rock layers (Schwinning 2010). Yet in land-surface models (LSM), which simulate land-atmosphere exchange of water, rock moisture is an unconstrained water source and thus limits the accuracy of predictions of climate dynamic. Novel LSM parameterizations of rock moisture are in development (e.g. Vrettas and Fung 2015, Brunke et al. 2016,), but the limited number of direct observations of rock moisture makes it difficult to constrain physical processes in such models. Long-term, direct measurements of rock moisture, such as those at the Eel River CZO (ERCZO), are required to fill this gap. For example at ERCZO rock moisture datasets demonstrate that partitioning of rainfall between evapotranspiration (green water) and runoff (blue water) is strongly influenced by deeply rooted vegetation accessing rock moisture (Fig. 5). Understanding when and how rock moisture governs reservoirs of ET and runoff is essential for accurate climatic and hydrologic predictions.

The dynamics and transit time of rock moisture have obvious implications for hydrologic models, but also remain a poorly constrained component of the reactive transport models that are needed to provide a robust framework for predicting the routing and flux of water and solutes (e.g., Fan and Bras, 1998, Troch et al. 2003, Ebel et al. 2008). For example, the chemical composition and timing of streamflow is often inferred to be a result of water transport through weathered bedrock (e.g., Anderson and Dietrich, 2001, Kim et al. 2017, Winnick et al. 2017). A key limitation to improvement of these models is the paucity of direct observations within the weathered bedrock zone that are available to constrain and test such models. At the Eel River CZO (Druhan et al. 2017) advances in direct, high frequency measurements of geochemical and hydrologic fluxes within weathered bedrock have revealed the importance of weathered bedrock in regulating the geochemical composition of CZ waters (Fig. 5).

The vadose zone in the upland catchments in the Jemez CZO (New Mexico, USA) extend tens of meters into the fractured rhyodacite and tuff (Olyphant et al. 2016). Although half of the precipitation at this site is delivered as monsoon rains in the summer, water isotopes and trace element signatures indicate that in these catchments spring snowmelt is the dominant source of deep groundwater recharge and, hence, deep CZ weathering (Fig 6.; Harpold et al. 2014, Vazquez-Ortega et al. 2015, Zapata-Rios et al. 2016). A similar dynamic is observed in upper montane forested Gordon Gulch catchment in Boulder Creek CZO (Hinckley et al. 2014, Anderson et al. 2014, Langston et al. 2015, Anderson et al. in prep). Snowmelt that percolates through soil and fractured bedrock is stored for years in a deep groundwater reservoir that is only displaced into streams by propagation of a pressure wave pulse during the wet season (i.e., during snowmelt).

Such models will help not only in understanding subsurface flow but also in understanding chemistry and discharge of rivers. In particular, CZO researchers are starting to quantify how hydrologic factors govern the C-Q relationship of the conservative (e.g. Cl-) and geogenic (e.g. Mg2+) species concentrations in rivers (Li et al. 2017b). Results suggest that the C-Q relationship is strongly driven by the distribution of
source waters and subsurface flow patterns such as shown in Fig. 6. When the mass influx into streams primarily comes from soil lateral flow (interflow in the model), chemostatic behavior occurs. In contrast, when stream solutes mostly come from relatively constant groundwater – derived baseflow, chemodynamic behavior (dilution) dominates. These findings highlight the importance of subsurface water distribution in regulating C-Q relationships and thus the export of dissolved mass from watersheds. Yet in other lithological settings the C-Q behavior of geogenic solutes is controlled by changes in sampling of different “sources” in the CZ as hydrologic pathways change, including interaction with different mineral assemblages that alter to yield solutes (Kurtz et al. 2011) and soil process that generate metal-oxide and metal-organic colloids (Trostle et al. 2016; Aguirre et al. 2017; McIntosh et al. 2017).

Variations in tectonic regime, topographic relief, and bedrock mineralogy promote differences in emergent CZ properties, such as porosity and nutrient availability (e.g., Bazilevskaya et al. 2015, Hahm et al. 2014, St Clair et al. 2015) and impact on subsurface flow (Brantley et al. 2017). The interdisciplinary nature of CZ science has merged traditionally divergent disciplines (e.g., geophysics, geochemistry) to begin to tease out the relative contributions of primary bedrock mineralogy and tectonic forcings on CZ evolution. As a result, a variety of climatological, biological, chemical, and physical mechanisms are being quantified in the context of their role in producing pore space and mineral weathering within the CZ.

Chemical, biological, and physical mechanisms generate porosity (granular pore space and/or fractures) and provide important pathways for the transport of water, solutes, and particles through the subsurface. Organic acid production by mycorrhizal fungi accelerate mineral dissolution reactions proximal to plant roots, effectively increasing porosity and permeability. Similarly, plant roots can open fractured rock, exposing fresh rock surfaces to weathering solvents (e.g., water, acid). Plant roots may also contribute to surface erosion processes via tree-throw and root growth and heave, sending soil incrementally down hillslopes (e.g., Gabet and Mudd 2010, Roering et al. 2010, Hoffman and Anderson 2014). Finally, after plant death, plant roots may leave behind macro pores through which meteoric fluids and gases can reach previously unweathered minerals, driving CZ evolution deeper into the subsurface. Of course, all of these processes require nutrient delivery from fresh rock that is provided by tectonic (e.g. uplift) and/or erosive processes (or dust inputs).

Acting throughout the CZ, physical mechanisms are becoming increasingly recognized as key drivers of critical zone architecture, and may dominate over chemical processes in some settings (Brantley et al. 2017, Hayes et al. in review). In the last decade, great strides have been made in identifying and describing the individual physical mechanisms that dictate CZ architecture. Physical processes initiated at the surface or near-surface include frost cracking (Anderson et al. 2013, Rempel et al. 2016), tree sway (Marshall et al. 2016), and topographic stress (St. Clair et al. 2015). A host of recent models and near-surface geophysics (e.g., Rempe and Dietrich 2014, Marshall et al. 2015, St. Clair et al. 2015, Rempel et al. 2016) have greatly expanded our knowledge of how specific tectonic, climatic, and abiotic and biotic stresses vary spatially in terms of shaping the vertical and lateral subsurface structure of the critical zone. For example, the interaction between tectonic and topographic stresses predicts subsurface structure either surface parallel or inverted depending on the relief and degree of regional compression (St. Clair et al. 2015). These fractures in turn can increase development of porosity and the rate at which bedrock is converted to soil. For example, frost cracking predicts aspect-dependent cracking intensity that generally decreases as a function of depth to ~ 5 m, with local climate factors combined with the pre-existing pore spaces in rock dictate just where in that 5-m zone the rock damage (increase in porosity) is most intense (Anderson et al. 2013, Marshall et al. 2015, Rempel et al. 2016).

Physical stresses on bedrock may also be imparted as a result of chemical reactions, where oxidation of iron-bearing minerals and re-precipitation of hydrous iron oxides results in a volumetric expansion at the (micro)mineral scale (Fletcher et al. 2006). Only recently are we learning the extent to which microfracturing along grain boundaries connects pore space in largely “unweathered” rock (Jin et al. 2010, Bazilevskaya et al. 2015, Gu et al. 2016, in preparation), providing some of the foundational architecture for CZ development. Teasing apart the relative contributions of thermally, biologically, and chemically-driven physical processes on the initiation of porosity development (i.e., the initial transformation of bedrock to regolith) remains a fundamental problem for critical zone scientists.
All of these processes drive fracture development in the subsurface, allowing pathways for meteoric fluid and gas infiltration into the subsurface. Employing the CZ reference frame to our understanding of the role of fractures in the evolution of subsurface CZ architecture, we are beginning to connect the dots between fracture density and orientation to the heterogeneous development of nested weathering fronts across a single watershed (Sullivan et al. 2016).

1.4 **Geophysical imaging and deep sampling of the subsurface can be used to map deep CZ structure, which is poorly known in most regions**

Fig. 7: A figure comparing the modeled failure potential (A, B), modeled magnitude of the least compressive stress (D, E) and measured P-wave velocity (G, H) for Gordon Gulch in the Boulder CZO and Calhoun CZO. In this figure from St. Clair et al. (2015), the depth of fracturing and weathering is very different in Gordon Gulch where the regional stress is not compressive versus Calhoun where the site experiences regional compression. St Clair et al. argued that the decrease in P-wave velocity is related to deep fracturing and weathering that occurs because of the regional stress regime and the topography. As shown in the figure, such seismic imaging is now being used to map reaction fronts and fracture densities in the subsurface, allowing better understanding of subsurface water flow and rock mechanics properties without drilling.

Multiple, complementary near-surface geophysical measurements are being used to elucidate CZ structure, as are approaches that combine geophysical and geochemical approaches to decipher the feedback between CZ structure and function (i.e., Holbrook et al. 2014, Parsekian et al. 2015, St. Clair et al. 2015, Orlando et al. 2016). Multiple methods such as ground-penetrating radar (GPR), electrical resistivity imaging (ERI), seismic and electromagnetic (EM) induction are being used to characterize landforms in the range of meters to 100s of meters to characterize CZ subsurface structure at the catchment scale (Van Dam 2012). For example, St. Clair et al. (2015) demonstrated how an array of seismic and electrical resistivity surveys can characterize stress fields. Those authors argued that regional stress fields may explain the distribution of bedrock fractures and weathering below the surface in regions of compression (Fig. 7). Likewise, at the Luquillo CZO, Orlando et al. (2016) showed the correspondence between valley areas and the presence of chaotic reflectors and diffraction hyperbolas in GPR profiles associated with the presence of lineations interpreted as fractures. Surveys were later expanded in the area (Hynek et al. 2016, Comas et al. in preparation) (Fig. 8), further showing the correspondence between these areas of enhanced reflections in the GPR, with decreases in terrain conductivity, and increases in magnetic susceptibility. These geophysical features have been attributed to deep fracture zones in the quartz diorite that promote deep weathering.
Observations from multiple CZOs have also developed some cross-cutting conceptual models of water flow at depth. Several CZOs have noted that more than one lateral flow of water occurs underneath hills such that water can flow laterally even in the vadose zone. This is a common occurrence when local zones of perched saturation allow such lateral flow. One hypothesis states that such lateral flow zones may be preferentially aligned with sharp mineral reaction fronts where one mineral dissolves or is replaced by another mineral. Such reaction fronts – especially where clay minerals accumulate -- may be zones of increasing porosity and permeability that promote perched saturation. Since reaction fronts are often observed in a sequence or “nested” in the subsurface of a hill top (Brantley et al. 2013), the development of models that predict the depths of fronts may promote development of better models of water flow under hills. Brantley et al. (2017) proposed a conceptual model relating chemical reaction fronts to water flow paths where within regolith-rock profiles, a one order magnitude of change in permeability can shunt water downslope creating a saturated unit above the water table, referred to as interflow, while deeper in the profile water also moves laterally downslope when it reaches the groundwater table. A very promising new idea is that we can use geophysical imaging to map these subsurface reaction fronts and in turn use the fronts to make predictions about porosity and permeability and subsurface fluid flow (Brantley et al. 2017).
1.5 Models to date suggest that the spatial variation in critical zone architecture across hillslopes of a given lithology depends on river incision rates, regional stress fields, solute evolution of subsurface waters, depth of freeze-thaw activity, as well as surface sediment transport process.

The CZOs are now providing a platform for models from distinct disciplines that “talk” to each other (Duffy et al. 2014), and have thus fostered a variety of multi-disciplinary simulations ranging from complex, processes-based numerical models describing interactions of hydrology, biology, contaminant fate and transport and isotope geochemistry (Druhan et al. 2014), to simple analytical solutions that provide general conceptual frameworks (Rempe and Dietrich 2014).

Two examples of multi-disciplinary models developed within the context of the CZO network are the newly developed open source 3D CPU-GPU hybrid Dhara model that couples both above- and below-ground processes (Le et al. 2015), and the watershed hydrogeochemical model RT-Flux-PIHM (Bao et al. 2017, Li et al. 2017a). The Dhara model includes explicit treatment of energy, moisture, carbon and nitrogen dynamics (Fig. 9A), and has been used to characterize both nutrient age (Woo and Kumar 2016), and fluid flow and transport through tile drainage networks (Woo and Kumar 2017). The RT-Flux-PIHM model integrates the Noah LSM, PIHM, and RT (Fig 9B). The Noah LSM (Flux) is the land-surface module that solves surface energy balance (Chen and Dudhia 2001, Shi et al. 2013); PIHM calculates surface and groundwater interactions (surface runoff, infiltration, recharge, subsurface lateral flow, channel routing); while the RT component uses calculated water distribution and flow rates from Flux-PIHM to solve Advection-Dispersion-Reaction (ADR) equations for the spatio-temporal evolution of aqueous and solid phase composition. The alteration in aqueous and mineralogical composition is assumed to have negligible impacts on hydrological processes at the time scale of months to years. In essence, this model enables conversation between meteorologists, hydrologists, and biogeochemists. Similarly, the terrestrial integrated modeling system (TIMS) of Niu et al. (2014) couples numerically a set of existing models that describe land-atmosphere exchange of water and energy, catchment hydrologic flows, vegetation dynamics and biogeochemical reactions for the purpose of exploring mechanisms of process coupling.
The type of cross-disciplinary, multi-scale integration represented by these two CZ-based models enables an array of new hypotheses to be uniquely tested for the first time. For example, how do land-surface interactions influence surface and subsurface water chemistry? As shown in Fig 10, the RT-Flux-PIHM model allows examination of spatial patterns of local mineral (chlorite) dissolution rates (Fig. 12A), Mg concentration on soil exchange sites (Fig. 10B), as well as quantification of watershed rates and fluxes (Fig. 10C).

Another model under development and used at more than one CZO is the effective energy and mass transfer (EEMT) model. Ecosystem production and soil development in the southwestern U.S. are limited by water availability. Research in the Catalina-Jemez CZO has shown that climate (varying as a function of elevation) exerts strong control over mineral transformation, carbon storage and soil depth (Lybrand and Rasmussen 2015). Studies have also shown, however, that the specifics of landscape position (i.e., aspect, convergent versus divergent flow positions) and its impact on micro-climate and lateral subsidies of water and carbon, also strongly influence regolith depth and patterns in element depletion/enrichment (Hollera et al. 2015, Lybrand and Rasmussen 2015, Vazquez-Ortega 2016). Such observations are quantitatively consistent with EEMT model predictions that include consideration of aspect controls over radiation and evapotranspiration, and topographic controls over lateral hydrologic flux (Fig. 11; Rasmussen et al. 2015).

In the temperate forest of the northeastern U.S., variations in microclimate associated with aspect are associated with strong changes in mineral weathering. On south-facing hillslopes weathering rates are faster, but on north-facing hillslopes the soils are more weathered (Ma et al. 2011). Linking of the hydrologic model Flux-PIHM and the geochemical box model WITCH to earthcast — forward projections of the Earth’s surface — shale weathering fluxes demonstrated that in this central Pennsylvania catchment, an 0.45°C increase in temperature and its resultant effect on evapotranspiration will lead to a 4-13% increase in weathering fluxes from the shale. Furthermore, earthcasting also demonstrated that nutrient cycling by vegetation slows the rate or weathering fluxes in shale landscapes (Sullivan et al. in review).

Fig. 10 A: Predicted spatial distribution of chlorite dissolution rate (source of Mg) on in April, August, and December, 2009; B: Predicted patterns of Mg concentration on solid surface through ion exchange at these times; C: Temporal evolution of watershed-scale Mg input (dissolution, GW, and rainfall) and Mg export through discharge in SSHCZO.
1.6 CZ structure controls hydrologic function, and in turn CZ structure evolves through physical, chemical, and biological processes controlled by water.

Topography influences the three-dimensional structure of the critical zone by affecting the transport rates and paths of water and sediment moving downslope. Topography also affects microclimates, organizes subsurface water flow, and constrains vegetation distributions; influencing both the reservoirs of the critical zone and setting the stage for critical zone processes. Conversely, critical zone processes from chemical and physical weathering to biological activity influence the occurrence and rates of geomorphic processes. Thus, approaching geomorphic models from within the paradigm of critical zone science requires considering how, where, and at what timescales geomorphic processes are coupled to other types of critical zone processes.

The coupling between geomorphic process and shallow properties of the critical zone has long been recognized. For example, the relationship between landscape and soils has received considerable study, ranging from Jenny’s identification of topography as a primary control on soil formation (Jenny, 1941) to discussion of aspect as a control on soil formation (e.g., Rech et al. 2001, Langston et al. 2015, Pelletier and Swetnam, 2017). Feedbacks between chemical and physical weathering and the erosion of landscapes have been more broadly explored than potential feedbacks between landscape evolution and fluxes of solutes (Anderson et al. 2012). Soil evolution in settings dominated by aeolian transport has been modeled and compared to soils forming by bedrock weathering (Cohen et al. 2015), but the relationships between geomorphic process and critical zone form and function in other landscapes characterized by net sediment deposition remain an area of emerging research. Hillslope evolution models utilize relationships between soil production and soil depth (e.g., Heimsath et al. 1997). Development of models of the role of vegetation and animals in influencing both soil formation and hillslope sediment transport is an area of active research (e.g., Gabet and Mudd, 2010, Hoffman and Anderson, 2014, Yoo et al. 2005).

In the deeper portions of the critical zone the relationships between geomorphology and other critical zone processes present opportunities for significant new advances in understanding and represent an area of growing research. Anderson et al. (2013) model rock damage via frost cracking to depths of 10 m and its impact on hillslope evolution. Pelletier et al. (2013) present a coupled model of soil formation, hillslope and fluvial transport developed in the context of the climate and vegetation gradients of the Sky Islands region of Arizona. Rempe and Dietrich (2014) couple groundwater flow and rock weathering to hillslope evolution. These studies focus on regions of bedrock uplift with little study of the geomorphic interactions with the deep critical zone in depositional areas. Landscape evolution is likely an important control on the deep critical zone and understanding the relationships between topography and the structure and function of the deep critical zone is vital to advancing knowledge of the lower portions of the critical zone (Riebe et al. 2017).
1.7 The distribution and identity of micro-organisms in the regolith – “the weathering microbiome” – creates patterns in soil carbon, soil atmosphere, soil chemistry and soil mineralogy that vary with lithology, landscape position, and depth.

CZ scientists are participating in the huge explosion in use of molecular biological tools to explore the variety of micro-organisms in the environment. As different disciplines explore the “microbiome” in different organisms and environments, CZ scientists are exploring the “weathering microbiome”. In particular, CZ scientists are investigating how microbiota vary with depth and landscape position and how soil-forming factors such as lithology and climate affect the distribution of microbiota (Eilser et al. 2012, Minyard et al. 2012, Yesavage et al. 2012, Gabor et al. 2014, Liermann et al. 2015). This exploration is mapping patterns in microbiota identity and distribution in the subsurface and is leading to understanding of the controls on these distributions (Fig. 12). CZO researchers have also emphasized that microbiota affect mineral composition and distribution, leading to the growing idea that mineral composition and distribution may be used to understand microbial processes at depth.

![Fig. 12](image)

Fig. 12: A plot of relative abundance of different archaea and bacterial taxa versus depth for 9 soil pits in a forested montane watershed in the Boulder Creek CZO. The authors discovered that there was as much variation within individual soil pits as across the surface soils from different biomes. This study emphasizes the need for greater investigation of the deep weathering microbiome (Eilers et al. 2012).

1.8 CZ architectures may be a legacy of geologic, tectonic, or climate history, rather than in equilibrium with current forcing.

Landscapes are shaped by weathering and erosion processes that are affected by climate, baselevel, or tectonic uplift. In some cases, landscapes may be legacies of past conditions. Glacial climates prevailed for most of the Quaternary, the last 2.5 Myr of Earth history. Many landscapes and their CZ architectures were shaped by processes active during glacial climates (e.g. glacial erosion and deposition or periglacial processes) that are not present today. For instance deposits from the Laurentide Ice Sheet thickly mantle bedrock in IML-CZO sites (Yan et al. 2017), while the headwaters of Boulder Creek CZO were scoured by Pleistocene alpine glaciers (Dünnforth and Anderson 2011). A perhaps more subtle legacy of glacial climates is found outside glacial limits, in terrain where periglacial processes held sway during periods of glacial climate. Frost cracking, solifluction, and other periglacial processes drive mechanical weathering and sediment transport on hillslopes via mechanisms that may not occur under modern climates. The role...
of periglacial processes shaping present CZ architecture has been explored in Shale Hills CZO (West et al. 2014), which lies south of the terminus of the Laurentide Ice Sheet, and in ice-marginal areas in Boulder Creek CZO (Anderson et al. 2013). Frost cracking is a mechanical weathering process that can operate at significant depths below the ground surface, creating porosity that affects modern hydrologic function.

While glacial climates bring to mind the direct influence of glaciers and permafrost, even regions lacking freezing conditions were affected by the global climate shifts during the Quaternary. Cooler and drier conditions were widespread during glacials, but shifts in the jet stream brought greater rainfall and lakes to some regions (e.g. Lake Bonneville in the western United States, a lake filling the present Dasht-e Kavir desert in Iran, and periods of “green Sahara” and pluvial lake expansion in Africa). Because soils, weathered profiles, and topography often represent >10 kyr of evolution, the impact of Quaternary climate and ecosystems should be considered when evaluating current conditions.

Changing baselevel, whether due sea level change (e.g., Luquillo CZO), climate or tectonic driven exhumation (e.g. Boulder Creek CZO), tectonic uplift (Eel CZO) or land use change (e.g. Calhoun CZO), affects fluvial incision, which in turn affects adjacent hillslopes. Fluvial knick points are recognized as important perturbations whose influence persist as hillslopes, groundwater systems, and soils adjust to new conditions (Anderson et al. 2012, Brocard et al. 2016). Figure 13 shows influence of knickzone propagation (by a wave of rapid channel incision) on surrounding hillslopes and groundwater systems, using Boulder Creek as an example. In general, any perturbation to landscape lowering rates will ripple influence throughout the landscape as groundwater flow, weathering rates, and mobile regolith transport rates respond. Critical zone architecture will therefore reflect climate over the residence time of material within it, and the history of fluvial or shoreline elevations that set baselevel for the landscape.

Fig. 13: Influence of knickpoint migration upstream in Boulder Creek CZO (from Anderson et al., 2012). a) Lidar hillshade shows topography from headwaters of Boulder Creek (left side of image) to edge of the Plains (right side of image). White dots show approximate location of current knickpoint in main channels, while white line outlines region of hillslopes adjusting to the fluvial downcutting associated with knickpoint migration. Inset shows theoretical width of areas of transient hillslopes downstream of knickpoint for different hillslope response speeds, based on Mudd and Furbish, 2007. b) Sketch showing influence of rapid fluvial incision on hillslope profiles and groundwater systems.
1.9 Anthropogenic perturbations may be changing the CZ from a transformer-dominated system to a transporter-dominated system.

In many landscapes, intensive anthropogenic alterations have affected hydrological and biogeochemical characteristics across whole catchments. The rapid intensification of agricultural practices, for example, has fundamentally altered soil structure, leading to an almost ten-fold increase in soil erosion, and even larger increases in concentrations and fluxes of important limiting nutrients in nearby aquatic ecosystems. The agricultural heartland of the US was once a system in which streams were characterized by long residence times of water, carbon and nitrogen, but rapid land use change and landscape modification have shifted these ecosystems to transport-dominated systems characterized by fast movement of water, sediment, and nutrients through the landscape (Kumar et al. in review). Legacy effects and their interplay with climate gradients have accelerated this transition to transport dominance (Van Meter et al. in review).

The IML and Calhoun CZO findings point to a cascade of hydrologic and biogeochemical patterns marking the impacts of the Anthropocene on soils and surface waters. These patterns span across all disciplines and reflect the changes that have occurred in the overall structural organization and behavior of the critical zone. Conservation practices have a positive effect on nutrient cycling in heavily managed systems (Papanicolaou et al. 2015a, Wilson et al. 2016, Woo et al. 2014) but the spatial scale of this response and the lag between human intervention and environmental response remain uncertain (see Fig. 14).

The reorganization of both surface and subsurface structure by tillage and tiles (T2 impacts) has affected the provenance of the transported material, its pathways, and delivery times to aquatic ecosystems. Flow paths through porous media have been affected by use of heavy machinery, leading to reduction of the rate of infiltration by two orders of magnitude (Papanicolaou et al. 2015b). Short-circuiting of flow pathways, developed through a vast network of subsurface tile drains and surface drainage ditches, has also led to an increase in flashiness within receiving channels, with further implications for water, sediment and...

Fig. 14: Spatial heterogeneity and temporal variability of SOC in the IML. A time series of simulated values of SOC is provided for the upslope (green line) and downslope (red line) zones of a representative IML hillslope, highlighting the variability of SOC following model initialization is plotted (black dot). In addition, field measured values of SOC collected within the upslope (green circle) and downslope (red circle) zones of several hillslopes within the study watershed are compared to corresponding simulated SOC values. The chronosequence in SOC storage for the erosional zone revealed that conservation tillage and enhanced crop yields begun in 1980s reversed the downward trend in SOC losses, causing nearly 26% of the lost SOC to be regained.

Note: Vertical error bars represent the standard deviation of the samples in gC/m².
nutrient transport (Abban et al. 2016). These modifications have been found to produce long-lasting effects on flux transport with enhanced fluxes of water, carbon and nitrogen characterized by shorter travel times through the system (Abban et al. 2016, Rhoads et al. 2015). The enhanced connectivity between landscape and receiving waters has resulted in a strong relationship between nutrient fluxes and riverine discharge, with geology also playing a key role on the overall response (Davis et al. 2014, Ward et al. 2016). Increased fluxes from upland areas have also led to an increase in sedimentation rates on floodplains by an order of magnitude, resulting in a redistribution of material on the landscape with increased storage in valleys (Papanicolaou et al. 2015a, Grimley et al. 2017). Bank erosion has increased and is also a significant contributor to material flux within the stream network (Abban et al. 2016, Papanicolaou et al. 2017a).

Channel straightening along with clearing of vegetation for improved drainage and to increase “useful” agricultural land area has also led to a destabilization of streams in which oversteepened bed and bank slopes are generally unstable, leading to migrating knickpoints and bank collapse that both increase material loads within the stream network (Sutarto et al. 2014, Bressan et al. 2014, Papanicolaou et al. 2017b). Future efforts should focus on development of a system-level approach to understand and model the connectivity among various units of intensively managed landscapes.

1.10 An emphasis on the entire CZ throughout the undergraduate, graduate and postdoctoral programs attracts and develops a diverse group of scholars who bridge Earth and environmental sciences seamlessly

Students (graduate and undergraduate) and postdoctoral scholars represent nearly 60% of the individuals conducting research at the CZOs (in 2015; CZO National Office) with increasing recruitment over time (Fig 14). The focus of their study is broad ranging from biodiversity, microbial ecology, agriculture, engineering, meteorology, geology, soil science, watershed biogeochemistry and plant science, among others. This breadth reflects the transdisciplinary nature and education and training provided by the CZO program and how this new generation of Earth and environmental scientists works across disciplines. Now more than 25 faculty members, trained at US based CZOs, have been hired at US and international universities including appointments at large land-grant RI universities and smaller teaching intensive 4-year colleges. Early career faculty are now advising and teaching new students at their home institutions. This means that new research and graduate training initiatives are being offered across institutions and the transdisciplinary concepts of CZ science are being integrated into undergraduate curricula. One exemplary effort is Roanoke College where CZ science is being used as an integrative framework and core theme for their Environmental Studies program. These efforts have resulted in the broader dissemination of CZ science across institutions and an increased exposure to the framework and science of the critical zone to a new generation of CZ practitioners.

Reflecting this diverse training, early career faculty are now bridging CZ science with other disciplines. These faculty have developed a new course on CZ science as well as incorporating CZ concepts into established courses. For example, through funding support from the NSF-funded InTeGrate program at the Science Education Resources Center at Carleton College, a semester-long university-level CZ course was developed and taught at five different US institutions (White et al. 2017). These institutions ranged from large R1 universities to smaller liberal arts college and across departments and degree programs ranging from Natural Resources, to Geography and Geology, Hydrology, Environmental Engineering, and Biology. Other faculty are incorporating CZ concepts and knowledge into established courses and as a result enhancing the multidisciplinarity of traditionally siloed curricula. Two examples are a Watershed Hydrology course at the University of Minnesota and a Geochemistry of Natural Waters at the University of Vermont. Collectively, these efforts introduce CZ science to literally hundreds of new students each year promoting more and more cross-disciplinary and system-thinking in future cohorts of environmental scientists (Wymore et al. 2017a). Future training efforts should continue to diversify participation of students and post-doctoral researchers as well as working with secondary school instructors. Critical zone science is a natural integrator of the natural sciences and could offer an ideal unifying framework for high
school-level science courses. Support for these training and outreach efforts will need to continue if CZ science is to sustain into the future.

The CZO program has also facilitated the development and distribution of stand-alone resources for teachers at the K-12 and undergraduate levels that can be incorporated into classroom and instructional laboratory settings. These range from hands on activities, to activities that use CZO data, to individual teaching modules, videos, and on line virtual field experiences (Duggan-Haas et al., 2015, 2016, 2017; Moore et al. 2017). These resources demonstrate CZ concepts, and in many case the value of CZ services to a wide audience.

Fig. 14: Cumulative growth of graduate students and post-doctoral researchers receiving training in Critical Zone science. Data were collected from the US Critical Zone National Office and reflect reporting from across the US Critical Zone Observatories. Figure does not represent a complete data set. Actual growth across the entire international CZO program is likely to be much greater than expressed in this figure (Wymore et al. 2017a).

2 Compelling CZ Science Questions for the Coming Decade

We describe ten compelling questions that arose at the Arlington meeting or other discussions of CZ scientists based on the transformative findings summarized above. These questions should drive the CZ science and network of the future.

2.1 As energy propagates through the CZ, how does it drive the emergence of patterns in porosity, fracturing, permeability, grain size, mineralogy, and micro-organisms and how are these patterns distributed at depth and across landscapes?

Energy propagates through the CZ to form the structure that controls gas, fluid, solute and sediment fluxes. At the base of the CZ, tectonic energy sets the initial fracture density and dip angle, and at the top of the CZ plants and climate variability (freeze-thaw, shrink-swell) impart gradients in chemical and thermal energy, which drive fractures into the subsurface. Together these processes shape the distribution and connectedness of pore space and the mineral surface area on which reactions can take place. To be able
to predict CZ structure and evolution into the future, we must be able to reconcile how this energy, which
is transported and stored through the CZ, governs the properties that control its gas, water, and solute and
sediment fluxes.

Numerous models have been published that describe how trees, frost, tectonics, and chemical processes
drive fracturing in the CZ; however, few studies have linked theoretical models to in situ observations of
the CZ. Our primary focus in the coming decade will be to develop and test models of the dynamics of CZ
architecture with field measurements. Coupled with this task will be the use of these measurements to link
the disparate thermal, tectonic, biological, and chemically-based process models that describe evolution of
CZ architecture. From the last decade of research, CZ scientists have only very recently identified the
unifying emergent property of all of these processes as porosity development. Numerous upcoming
conference sessions are planned to bring together scientists from a variety of disciplines to integrate our
knowledge of porosity development under a CZ reference frame (AGU 2017 session EP053 Where things
aren’t: Understanding the role of porosity in the Critical Zone: Chapman conference, in prep). As a result,
the key scientific question moving forward with respect to how energy storage and transport drives the
evolution of porosity include the following: What primes the onset of porosity development or fracturing
in the critical zone and how are these processes affected by stresses across spatial and temporal scales?
What are the relative contributions from chemical, physical, and biological mechanisms toward porosity
development in the CZ? Where are these individual mechanisms most important within the CZ? Where
does the interplay between mechanisms happen? How do we measure the relative contributions of these
processes and how do we tease them out? How do we connect process-based models to reflect the complex
feedbacks in the CZ, and how do we generalize these processes to make these models transportable? Can
we generalize these processes to predict how they may control CZ emergent properties near the surface?

2.2 How do CZ services evolve in response to anthropogenic and natural disturbance?

Critical Zone services include storage and transport of clean water, maintenance of regolith suitable for
growing natural vegetation and crops, and mitigation of climate change through drawdown of atmospheric
CO₂. These services are perturbed (and perhaps threatened) by both gradual (e.g., climate change, erosion,
contaminant accumulation, land use change) and episodic (e.g., hurricanes, wildfires, spills) disturbances
that result from both natural and human activities. To project the response of CZ services to disturbance
requires that we continue to open the “black box” that is the CZ and address fundamental processes
underlying the transport of water, solute and sediment through the CZ and the transformation of solutes,
especially nutrients, within the CZ. We must be able to quantify, for example, where water is stored and
for how long, where plants access nutrients, and how deep and at what rate carbon can be moved through
the subsurface. Additionally, we must directly investigate how CZ processes respond to natural and human-
induced perturbation across short and long timescales. Such quantification is necessary to determine CZ
resilience, or how long a system can sustain disturbances, before the function of the systems is permanently
altered. For example, cultivated systems may be unable to sustain the intensive management required to
provide food and fiber resources, jeopardizing our ability to plan future resource and land use.

To predict the effects of disturbances to the CZ typically requires development of conceptual and
quantitative models. For example, there is a great opportunity for growth in geomorphic models of the CZ.
The fields of bio- and eco-geomorphology, which emphasize the connections between organisms,
geomorphic processes, and physical evolution of the landscape, provide novel targets for both conceptual
and numerical models of geomorphology from a CZ perspective (see Corenblit et al. 2011 for a review).
Humans as drivers of geomorphic and ecological change and intentional managers of the CZ is another area
ripe for development of new models (e.g. Richter 2007, Tarolli and Sofia 2016). Finally, there is a great
need to develop geomorphic models of the CZ that consider temporal variability in climate, vegetation/land
use, and landscape relief. Conceptual and numerical geomorphic models that couple temporally-varying
geomorphic processes with vegetation, climate, soil production, chemical weathering, sea level change and
isostatic loading and unloading by glaciers are ripe for development and are vital in understanding the form
and function of the critical zone in the context of the dynamic Quaternary (and Anthropocene) history of Earth.

2.2.1 As the CZO network grows and integrates models and data, where should new observatories be located?

One of the intents of the CZO program is to understand the form, function and dynamics of the critical zone. Clearly, we cannot investigate the CZ everywhere, and we should be able to extrapolate from one site to another once our models are robust enough. However, it is also clear that some geological locations may be so unusual or some land use impacts may be so intense that extrapolation from the current CZO network will not be possible. A thrust over the next ten years should be to investigate four under represented CZs: urban systems, carbonate terrains, arctic regions and coastal margins.

1. Urban systems — Little is understood about the structure and function of the CZ in urban areas even though 54% of humans globally, and 77% of the population in more developed countries, live in urban areas (UN, 2014). While a growing number of geochemical and ecological studies are focused on urban areas (Chambers et al. 2016, Kaushal et al. 2014, Tanner et al. 2014), scientific research on urban areas would benefit greatly from the application of CZ science. The geologic framework and history (topography and glaciation) underlying urban watersheds produce different streamflow characteristics such as flashiness and high flows in response to urbanization (Fletcher et al. 2013, Hopkins et al. 2015) despite apparent homogenization in surface land use and ecology (Groffman et al. 2014). An overarching question about the urban CZ is: does the urban CZ function in a different way than the CZ in forested or, even more, agricultural areas? Or does the urban CZ function similarly, albeit at different rates? This overarching question can be answered by 1–2 urban CZOs. Broadening our understanding of more specific questions about the urban CZ can be addressed through campaign approaches with synchronous sampling of multiple urban areas or satellite approaches (e.g., building on LTERs that exist within, or at an interface with, urban environments such as the Baltimore, Phoenix and Plum Island LTERs). Key research questions to be answered through an urban CZO include: How does landscape disturbance and the addition of engineered surface and subsurface infrastructure affect water movement through and storage in the urban CZ, and how does altered water movement change elemental cycling and fluxes, including subsurface weathering? Does urbanization cause increased weathering of regolith and bedrock minerals through addition of anthropogenic acids (nitric and sulfuric) and movement of unweathered material from the subsurface to the surface? Or does urbanization reduce weathering through decreased flow of water into the subsurface? How does urban water supply, wastewater, and stormwater infrastructure affect CZ water storage, chemical composition, and weathering rates? Does urbanization shift the location of CZ “hotspots”, e.g., N cycling shifting from vadose zone and shallow groundwater to stream channels and engineered structure? How do high solute concentrations originating from the urban CZ influence C export and cycling in coastal ecosystems and globally? How do different geological and climatic settings affect the import and export of water and solutes from urban areas? Some of these questions may be best answered by collaborating with social scientists (economists, anthropologists, sociologists, political scientists) to help quantify the broader inputs/outputs from urban centers and there influence on hydrological/elemental cycling.

2. Carbonate terrains cover 20% of the ice-free terrestrial land (Hartmann and Moosdorf 2012), supply 20–25% of the world’s population with potable water (Ford and Williams 2007), and via their relatively rapid dissolution rates, act as a disproportionately dominant source of dissolved weathering fluxes to the ocean (Gaillardet et al. 1999). The relatively fast dissolution rates of carbonate minerals also support the development of vuggy porosity and conduits that lead to rapid hydrologic fluxes. These fluxes are sufficiently fast that we can observe CZ responses to stochastic events, such as individual storms, as well as seasonal and yearly fluctuations in environmental conditions that generate observable responses in the CZ. The rapidity of mineral dissolution and water/gas/solute fluxes leads to a central question: Can carbonate terrains be leveraged as bellwethers for how Earth’s CZ will respond to future climatic and human
perturbations? Moreover, given the significant consumption of CO$_2$ associated with rapid carbonate
dissolution rates, what role will carbonate terrains play in controlling atmospheric CO$_2$ dynamics in the
Anthropocene? In comparison to CZs developed on other lithologies, it is likely that the greater hydrologic
flashiness and heterogeneity in conduit development exhibited by carbonate systems drive distinct patterns
of vegetation water use and productivity, top-down (e.g. biological processes) and bottom-up (e.g. regolith-
bedrock interface characteristics, bedrock topography) drivers of soil development, and surface-
groundwater interactions. However, these ideas are rarely examined in detail. Illuminating these and related
phenomena in carbonate terrains is likely to shed light on other, non-carbonate CZs by revealing how plant
and microbial communities, soil fabrics, and hydraulic properties evolve over the relatively short time
periods required for detectable change to occur. Carbonate-based observations can be used to formulate
hypotheses addressing questions of system evolution in non-carbonate terrain, to be tested at existing CZOs
and in a myriad of future studies. Carbonate-based observations will also be critical for understanding
systems influenced by the eolian, pedogenic, or groundwater addition, precipitation, and/or dissolution of
carbonate minerals. Examples of these CZs include calcareous loess-mantled landscapes of the Midwestern
US and alluvial landscapes in the arid southwest that contain various stages of calcic soil horizons and
indurated pedogenic calcrites. Key research questions that can be addressed through a carbonate terrain
CZO include: What are the interactions and feedbacks among biological CO$_2$ production, transport, and
carbonate weathering, and how do they vary across carbonate terrains and along climatic gradients? Does
carbonate dissolution by sulfuric (produced by sulfide minerals) and nitric acid (enhanced by inputs of
anthropogenic reactive nitrogen) act as an important source of atmospheric CO$_2$, given the CO$_2$ released
with marine carbonate mineral precipitation is not compensated through these dissolution reactions?, How
does the regolith-bedrock interface—including its depth and topography, the density and orientation of
bedrock fractures and conduits, and morphological and chemical properties of the regolith—drive changes
in soil-water potential energy gradients that affect the distribution of soil moisture, water flux and roots?
Can we leverage the rapid dissolution of carbonates to elucidate how acid production (e.g., malic, citric,
oxalic) by roots and associated microbes influences the relative abundance of soil minerals? How does this
weathering vary with ecosystem productivity, vegetation community, and ecosystem development, and
what role does this play in epikarst development? Does the rate of nutrient recycling by vegetation differ
in carbonate terrains compared to non-carbonate terrains given the affinity of carbonate minerals for P and
Fe, and does this recycling rates increase over time at the same rate as mineral depletion? How do erosion
signals propagate through landscapes developed on layered rocks (carbonate or carbonate/non-carbonate)
and how does this process differ under conditions of progressive karstification? Are there key carbonate
CZ processes and functions (some listed above) that are essential to include for more accurate Earth system
model predictions?

3. **Arctic Regions** should be an important geographic focus for CZ science. Although substantial
research has focused on ecological processes in arctic regions, CZ science is uniquely poised to evaluate
ongoing changes in CZ structure due to subsurface permafrost thaw and associated impacts on hydrology
(e.g. thermokarst processes), ecology, and biogeochemistry that are occurring on relatively short timescales.
Changes in the Arctic are likely to have disproportionate effects on the biosphere, especially given that they
are extremely large carbon stores. Studies of permafrost-affected systems would benefit from collaboration
between CZ scientists and the current network of arctic observatories (e.g. Bonanza and Toolik Lake Long
Term Ecological Research sites) where research is actively conducted in this challenging and dynamic
environment. In addition, the climate is changing most rapidly at northern high latitudes where extensive
permafrost degradation due to increasing temperatures is driving changes in hydrology, ecology, and
biogeochemistry (Hinzman et al. 2013, Bring et al. 2016, Wrona et al. 2016). Of major consequence is the
potential for soils in these regions to become a source for atmospheric carbon (CO$_2$ and CH$_4$) and accelerate

4. **Coastal margin**— This is the broad zone where land meets sea that hosts over 600 million people
(McGranahan et al. 2007)– is characterized by complex biophysical interactions, productive and dynamic
ecosystems, ongoing environmental change, and significant values to society. As climate changes into the future, the coastal zone will be rapidly impacted as sea levels rise, groundwater-seawater mixing shifts, changes precipitation to evapotranspiration ratio, and riverine/fluvial exports (e.g., solutes/sediment etc.) from higher in the watershed change. The critical zone is connected to the coastal ocean in interesting and potentially important ways that remain poorly explored in many regions of the world. In this light, the critical zone observatory (CZO) framework has the potential to reorganize the way we think about coastal margins. For example, freshwater runoff and terrestrial nutrients have long been recognized as important contributors to coastal ocean dynamics, yet watersheds are often treated as simplistic (e.g., 2D) sources of flux to the ocean. The CZO concept emphasizes integrated analysis of the vertical column “where rock meets life”, prompting deeper investigation of the factors driving dynamic stream exports and submarine groundwater discharge to the coastal ocean (e.g., Hakai Institute, Canada; the Florida Coastal Everglades LTER, USA). Conversely, coastal ocean research questions can provide a strong driving purpose for CZOs and oceans can influence critical zone evolution through processes such as the atmospheric deposition of marine salts.

2.2.2 How will climate change alter the CZ and how will CZ services respond to extremes in weather?

The fact that landscapes change through time means that the CZ will dynamically respond to climate change and extreme variability in weather (e.g., Anderson et al. 2012). In addition, climate variability at glacial-interglacial timescales (and shorter) drives variability in moisture and vegetation and creates important temporal variability in critical zone processes that are integrated into critical zone structure (e.g., Pelletier et al. 2013, Kumar et al. in review). Today’s models still do not incorporate such variability or the effects of climate and weather variability on CZ form, function, and process.

Despite our lack of modelling capability, extreme weather events driven by climate change are pushing the boundaries of CZ function and potentially leading to irreversible changes to CZ services. Increasing global temperatures are causing regional changes in hydrologic forcings, including increases in heavy precipitation events, increases in drought duration and extent, decreases in snowpack, and early snowmelt (Karl and Trenberth 2003, Trenberth 2011). Severe drought and floods directly impact water storage, vegetation growth and resilience, sediment transport, and solute export from watersheds (e.g., Bearup et al. 2014a, Borsa et al. 2014, Rue et al. 2017, Wicherski et al. 2017). These impacts have cascading effects on regolith evolution, plant-mediated weathering, and drawdown of atmospheric C (Bearup et al. 2014b, Anderson et al. 2015). In order to better predict CZ function in a rapidly changing climate, it is essential to understand how the CZ currently responds to these weather extremes, and over what timescales these events cause temporary or irreversible change.

2.3 What feedbacks allow communication between the vegetation canopy and deep bedrock? How can observatory measurements and models be extrapolated to explain global feedbacks in climate, weathering, and tectonics?

One of the strengths of the CZ framework is the focus on the coupling between physical, chemical, and biological processes both at surface and at depth. Just as it is well known that feedbacks govern the CO₂ in the atmosphere at the global scale, similar feedbacks must also govern soils development and energy, matter and water fluxes, at smaller scales. Another well know feedback is that weathering is thought to balance volcanic degassing over long timescales, which lead us to think erosion must balance weathering advance at depth in order for much of Earth’s landscapes to remain soil- and regolith-mantled.

2.4 Can we classify the types of critical zones and quantify them with appropriate dimensionless numbers that describe the form, function, and dynamics?

To what extent do climatic, pedologic and ecologic classifications fall short of capturing the process interactions that determine the fluxes of energy and mass through the critical zone, and the physical, chemical and biological structures that modulate them? Can a classification of critical zones not only capture the distinct ‘phenotypes’ of CZs that we can observe today, but also explicitly distinct ‘genotypes’
of dominant contemporary and historical drivers that determined the co-evolution of these distinctions over
824
time (Harman and Troch 2014)?
825
Within many distinct domains contributing to CZ science dimensionless numbers have had a
tremendous impact in helping us understand first-order controls on landscape functions: the aridity index
and Budyko Curve in hydrology (Budyko 1974), the geomorphic Peclet number (Perron et al. 2008),
elemental stoichiometry in ecology (e.g. Taylor and Townsend 2010; Wymore et al. 2016), and so on. Can
other dimensionless numbers be developed that link across CZ process domains, including the influence of
human activities? Or can a ‘tree’ of dimensionless numbers be constructed to help develop the classification
scheme described above?
832
2.5 How can methods of data assimilation be used in critical zone science to create forward-predictive
834
models?
835
Process-based integration models can be used to tease apart the importance of individual processes, to
test nonlinear coupling, and to identify controlling processes or parameters that need to be further
constrained. Such predictive forward model frameworks offer a pathway toward developing new conceptual
frameworks for simple models (Li et al. 2017b, Druhan and Maher 2017). However, models commonly
function over one of two characteristic time scales. At the scale of hydrologic cycling (hours to years), the
principle interests addressed by modeling studies are oriented toward the functioning of the CZ (Meixner
et al. 2000), whereas at the geological time scale (10^4 – 10^6 years), the primary focus is on the formation
2016). Duffy et al. (2014) argued that to span the entire CZ from the scale of the meteorologist to that of
the geologist requires multiple models written for simulations at different timescales. Several CZOs are
working with such different models. What remains to be accomplished, however, is using such different
models in cascades so that long timescale models are used to inform short timescale processes. For example,
the weathering of primary minerals and ingrowth of secondary phases occurs over geologic timescales.
These minerals in turn contribute to the geomorphic and hydrologic characteristics of the landscape
including the short-term solute-discharge relationship.
851
To inform such models requires data. Despite the large datasets collected at CZOs, new methods of
infilling data gaps and extrapolating data are needed for CZ science. Data assimilation originated from
numerical weather prediction (Daley 1991) and has been extensively used in atmospheric, geographic,
oceanic, and hydrologic sciences (Rabier 2005, Navon 2009). In contrast, such approaches in soil
modelling, reactive transport and biogeochemistry have been comparatively limited and only a few papers
have been written for CZO research using these techniques (Shi et al. 2013). Data assimilation techniques,
such as the extensively used ensemble Kalman filter (EnKF) (Evensen 1994), thus offer a potentially
powerful means of identifying key parameters and processes in highly nonlinear biogeochemical reaction
networks. More importantly, data assimilation experiments can also be used to guide where and what to
measure, therefore facilitating observation system design. Such work will foster connections between the
DOE Scientific Focus Area (SFA) and NSF CZO funded research.
862
2.6 How do we integrate CZ science into educational efforts at all levels and also promote the CZ
864
approach among scientists, managers, and policy makers?
865
The grand challenges facing society are inherently complex and cross multiple scientific disciplines.
866
The CZ approach is ideal to both understand the problems and identify solutions. Training the next
generation of scientists, managers, and policy makers begins through education, both formal and informal,
where a fundamental understanding of scientific concepts and habits of mind are developed. A CZ approach
can enhance student learning and science competency by providing both context and relevance to the
science. The current generation of scientists, managers, and policy makers are in need of science they can
translate to solve problems and make decisions on behalf of stakeholders and constituents. A CZ approach

to science and decision making would enhance our ability to consider the many complexities inherent in such problems and decisions and provide the foundational science that can translate to applied problems.

Traditionally, science is taught as disciplinary subjects (e.g. biology, chemistry, physics), especially at the elementary and secondary levels (K-12), or as semi-integrative (e.g. ecology, environmental science) more commonly at the post-secondary level. A CZ approach, however, fosters systems thinking, whereby a more holistic vision of Earth and hydrological processes and how they integrate with ecological and anthropogenic processes is considered and could help develop more scientifically literate students that ultimately may become scientists, managers and policy makers. Education also occurs informally outside the classroom, through participation in community and politics, providing another important avenue through which a CZ approach should be disseminated more broadly to engage and inform all citizens.

CZ science must be disseminated to help the current generation of scientists, managers and policy makers solve problems and make decisions that take into account both environmental and societal needs. A CZ approach can account for the complexity of such problems by involving multiple components, feedbacks and thresholds in thinking about earth systems. Collaboration among current CZ scientists and other groups is needed to foster and expand a CZ approach to problem solving and decision making. Continued opportunities to collaborate and expand the network of CZO sites will facilitate dissemination and application of CZ science and this uniquely trans-disciplinary approach to a wide variety of geographic settings.

3 CZ Approach for the Future:

Resonating across the CZ community is the need to support observatory science, because “doing” CZ science—deriving mechanistic theories and models of CZ processes and functions— requires diverse measurements (hydrologic, biogeochemical, structural) that are often taken over long-time periods and multiple spatial scales and are frequently well beyond the capabilities of any single investigator. The CZ community is calling for four primary expansions of the CZ approach over the next decade, beyond maintenance of a core set of ongoing observatories: (i) adoption of new observatories with characteristics beyond those represented in the current observatory network, and especially in areas undergoing rapid CZ change; (ii) establishment of satellite sites that leverage existing infrastructure (e.g., NEON and LTERs) to address specific questions; (iii) development of national campaigns to test CZ hypotheses across a larger domain; (iv) support for synthesis efforts to continually unite CZ science and foster the cross pollination of ideas. Below we synthesize the support of CZ scientists to support four facets of CZ science.

1. Nourishing the CZ Observatory Network — The NSF Earth Sciences Program (NSF EAR) has shown leadership in nucleating, growing, and nourishing the network of nine observatories. In turn, the community has used these observatories and developed datasets that are driving new understanding; models that are elucidating the function and dynamics of pedons, hillslopes, and catchments; and theories that are being tested worldwide beyond the observatories themselves and that will soon be helping decision makers worldwide. But perhaps most importantly, the observatories have helped train the scientists of the future who can see the CZ as a single entity and can understand the inter-relationships of its component parts (Wymore et al. 2017a, b). While the observatory network provides nine functions that have recently been summarized (Brantley et al. 2017), the main reason the network must continue is that it draws scientists together from disparate fields to make measurements and models and theories on the same locations. This did not happen before the CZO program and it is truly a paradigm shift in earth surface science. This achievement by the NSF EAR program cannot be understated and should not be underestimated by the program officers themselves. For the next ten years, the Foundation has the opportunity to make similarly game-changing investments to push CZ science forward by maintaining or growing a CZO network and by implementing ideas from the following list of initiatives.

2. Adoption of New CZ Observatories— To project CZ structure, function and evolution into the future, there is a need to expand the current CZO network to include systems that are undergoing rapid change.
Highlighted among the CZ community were needs for Urban, Polar/Arctic, Carbonate, and Coastal CZOs. Beyond the fact that these are not included in the current USA CZO network configuration, each of these landscapes acts as a fast-responding end member to perturbations of the earth system (e.g., urbanization, climate change, sea level rise) or represents an end member that cannot simply be understood from extrapolation from other observatories (e.g., urban sites, carbonates).

3. CZ Satellite Sites and Leveraging Existing Environmental Networks (e.g., LTER, LTAR and NEON) — Nationally and internationally a diversity of environmental observatories exist, from large entities like LTER to individual university field stations (Brantley et al. 2017). This was one of the resounding themes at the 2017 Arlington meeting, here participants resoundingly supported greater (and continued) interaction between/among programs especially LTER but also NEON and LTAR. These types of sites are rich in data, well characterized for many important attributes, and offer a platform upon which specific hypotheses can be addressed. However, observatories by definition are expensive to maintain: while essential to the CZ science endeavor, the program must also be augmented with short term initiatives that test individual research questions. One mechanism is the establishment of temporary sites of intense measurement activities – satellite sites. Such sites might be located along a gradient in environmental variables as discussed in one of the founding documents of the CZO network (Brantley et al. 2006) or exemplified by CZO activities (Dere et al. 2013). Alternately, sites could be located between CZOs or between a CZO and an LTER, etc. The salient feature of satellite sites would be that they would be shorter timescale than observatories, they would be less resource-intensive, and they could target a single research question of importance.

The US CZOs were all developed around pre-existing observational infrastructure, albeit of varying types and extent. Cost-effective expansion of the CZO network into some of the kinds of settings identified above can, in part, be facilitated by making additional focused investments in existing LTER and other observing sites. By no means should development of new CZOs be arbitrarily limited to pre-existing sites of a particular type, but in a number of cases an expansion of observing capabilities and most importantly conceptual models at existing sites could open up new research avenues while taking advantage of the existing infrastructure and long-term data sets. This combination can bring new investigators with new ideas and tools and interdisciplinary insight into critical environments in a cost-efficient way. The investigation to the deep sub-surface (including water and biota), a physical approach to landscape evolution, and coupled hydrological-reactive transport models are just a few examples of how extension of the measurements and concepts at traditionally ecologically or agriculturally oriented observatories might create new hybrid CZOs.

4. National CZ Research Campaigns — One of the big successes within the CZO program of the last decade was the geophysics campaign led by S. Holbrook of the University of Wyoming. This extremely well-funded effort benefitted from NSF EPSCOR resources provided to use geophysical techniques to understand hydrologic questions. The Wyoming group visited almost every CZO and produced geophysical measurements that complemented CZO efforts. The Wyoming team was highly successful in making broad ranging observations that synthesized ideas across CZOs and developed new theories and models. The salient feature of this effort was that it highlighted the use of a set of techniques to address important CZ questions, it was led by excellent scientists, it was well funded, it targeted multiple CZOs, and it was collaborative. Such a National Campaign could be repeated to implement cross-CZO microbiological approaches, remote sensing approaches, modelling approaches, or other ideas. For example, a campaign to examine the role of fungus in governing weathering across the CZ has been highlighted in a recent synthesis effort examining the role of trees as plumbers of the CZ. Such an approach encourages CZ specialists to expand the scope of their work, to test the boundaries at which hypotheses and models begin to fail. Such endeavors could easily be led by junior researchers who already have expertise in one or more CZOs. These campaigns could focus on characterizing patterns over large spatial scales.
5. **CZ Synthesis Programs and CZ Postdoctoral Scholars** — Workshops have been very successful in moving CZ science forward over the past decade leading to multiple special issues (e.g., C-Q relationships in Water Resources Research; Isotopes in the CZ in Chemical Geology, Landscape Evolution from a CZ perspective in ESPL). In the past, such efforts have been funded by small grants or subgrants (e.g., $25k or less from individual CZOs or the NSF supported SAVI program) and have relied upon enthusiasm more than funded effort. We seek mechanisms that can promote such integrative efforts more systemically. One challenge as we move into the future, for example, is to foster an environment where CZ data are integrated with data collected across other networks. One mechanism to accomplish this goal would be to support small competitive grants, similar to those of the USGS Powell Center program, which would fund diverse teams of researchers and data to work together over a relatively short period of time (1-2 y). Another idea that could promote synthesis would be a postdoctoral research program for junior researchers to address CZ questions that span the national scale and that necessarily incorporate data from multiple CZOs. A good example of the latter such effort is the ongoing research spearheaded by Ciaran Harman, Noah Molotch and Adam Wlostowski who are seeking to understand how CZ structure affects hydrologic partitioning.

6. **CZ Data Management Initiatives**. One of the most difficult aspects of CZ science is finding ways to publish data online in well documented formats chosen by scientists from each discipline. To push CZ science into the larger scientific community and heighten cross site comparisons we need to enhance and support these data sharing capabilities. In the first ten years of the program, NSF mostly funded a central group to provide data management. We discovered however that the large variety of CZ data required a more distributed approach. Currently, each CZO is pushing an effort to format and systematize data sites for individual disciplines. Some success has been observed for this grassroots approach. In the next ten years, we have the opportunity to push forward on this growth in data management capability by explicitly funding these grassroots efforts. At the same time, we also argue there is a need to expand transdisciplinary CZ science to include computer science, and revolutionize the integration of earth science data both in terms of visualization and predictive capabilities that advance science, bring about necessary societal changes (e.g., reduction is CO₂ emissions) and help to sustain natural resources. Thus, data management should be augmented in the next five years by promoting grassroots efforts to systematize data streams from disciplinary initiatives as well as to promote new cyber-enabled efforts in data mining, machine learning, visualization, and data assimilation.

4 **CZ Educational Initiatives for the Future:**

Given CZ science is a burgeoning field, there is a need to integrate into K-16 Ed and incorporate the story of place in a natural history context. We can use CZ science to help address the failures of systems teaching that have been identified by Don Duggan-Haas. An outreach component of the new proposals should yield materials that describe CZ concepts at each grade level. These can be delivered to teachers to use in classrooms. Additionally, we can expand RET programs to expose K-16 educators to CZ concepts in the field, that they can take back to the classroom. For example, the relatively new Next Generation Science Standards (NGSS)—a multi-state effort, representing 35% of students in the USA, to provide students an internationally benchmarked science education—propose using environmental contexts to teach basic science concepts and systems thinking. An effort to incorporate CZ science in implementing the NGSS would help instill a CZ approach in the rising generation of both citizens and scientists alike. At the post-secondary level, CZ science could be incorporated into existing science courses through the use of InTeGrate teaching materials (available through the Science Education Resources Center at Carleton College; e.g. White et al. 2017), which use data collected from CZOs to teach about CZ form and function, especially as it relates to human activities and decision-making.

In the coming decade there is a key need to develop a CZ public and policy maker communication plan that helps to package information gleaned from CZ science and demonstrates how this knowledge informs key CZ services. One mechanism to facilitate this plan would be to create a CZ-centric version of the Leopold Fellowships, which train ecological scientists to engage more effectively in the public arena.
Finally, CZ science needs to reach the broader public through entities like PBS Media Learning Center and the CZO Youtube channel. Opportunities like these let us bring CZ science into everyone’s home and provide a platform to train the public in transdisciplinary CZ thinking.

Conclusion:

With over a decade of CZ science now behind us, we stand poised to predict Critical Zone structure, dynamics and evolution. Integration across broad spatial scales, temporal scales and scientific fields creates an incubator for developing novel approaches and solutions to meet societal needs for potable water, nutritious food and a sustainable environment. We propose that the next step toward achieving this outcome requires us to continue opening the “black box” of the critical zone. By elucidating linear and non-linear behavior in CZ function and removing the bounds of the steady-state assumption, we will be much better able to anticipate how the CZ will evolve over time. The trajectory of CZ science now focuses on six questions posed by the next generation of CZ science:

1. As energy propagates through the CZ, how does it drive the emergence of patterns in porosity, fracturing, permeability, grain size, mineralogy, and micro-organisms and how are these patterns distributed at depth and across landscapes?
2. How do CZ services evolve in response to anthropogenic and natural disturbance?
3. How can observatory measurements and models be extrapolated to explain global feedbacks in climate, weathering, and tectonics?
4. Can we classify the types of critical zones and quantify them with appropriate dimensionless numbers that describe the form, function, and dynamics?
5. How can methods of data assimilation be used in critical zone science to create forward-predictive models?
6. How do we integrate CZ science into educational efforts at all levels and also promote the CZ approach among scientists, managers, and policy makers?

References

Authors and Affiliations:

Sullivan, Pamela L.— Department of Geography and Atmospheric Science, University of Kansas, Lawrence KS

Wymore, Adam — Department of Natural Resources and the Environment, University of New Hampshire, Durham NH

Aarons, Sarah— Department of Earth System Science, University of California, Irvine, CA

Aciego, Sarah — Department of Geology & Geophysics, University of Wyoming, Laramie, WY

Anders, Alison M. — Department of Geology, University of Illinois, Champaign, IL

Anderson, Suzanne — Department of Geography, University of Colorado Boulder, Boulder, CO

Aronson, Emma — Department of Plant Pathology and Microbiology, University of California, Riverside, CA

Arvin, Lindsay — Department of Geology & Geophysics, University of Wyoming, Laramie, WY

Bales, Roger — School of Engineering, Sierra Nevada Research Institute, University of California, Merced, CA

Berhe, Asmeret Asefaw— Soil Biogeochmesty, University of California, Merced, CA

Billings, Sharon — Department of Ecology and Evolutionary Biology and Senior Scientist, Kansas Biological Survey, University of Kansas, Lawrence, SW

Brantley, Susan L.— Department of Geosciences, Earth and Environmental Systems Institute, Pennsylvania State University, State College, PA

Brooks, Paul — Department of Geology & Geophysics, University of Utah, Salt Lake City, UT

Carey, Chelsea — Point Blue Conservation Science, Petaluma, CA

Chorover, Jon— Department of Soil Water and Environmental Science, University of Arizona, Tucson, AZ

Comas, Xavier— Department of Geoscience, Florida Atlantic University, Boca Raton, FL

Covington, Matt — Department of Geoscience, University of Arkansas, Fayetteville, AR

Dere, Ashlee — Department of Geology, University of Nebraska Omaha, Omaha NE

Derry, Louis — Department of Earth and Atmospheric Science, Cornell, Ithaca NY

Dietrich, William E. — Department of Earth and Planetary Science, University California, Berkley, CA

Druhan, Jennifer— Department of Geology, University of Illinois, Champaign, IL

Fryar, Alan — Earth and Environmental Sciences, University of Kentucky, Lexington, KY

Giesbrecht, Ian — Hakai Science, Hakia Institute, British Columbia, Canada